Se p 20 05 DUALITY AND EQUIVALENCE OF MODULE CATEGORIES IN NONCOMMUTATIVE GEOMETRY
نویسنده
چکیده
This is the first in a series of papers that deals with duality statements such as Mukai-duality (T-duality, from algebraic geometry) and the Baum-Connes conjecture (from operator K-theory). These dualities are expressed in terms of categories of modules. In this paper, we develop a general framework needed to describe these dualities. In various geometric contexts, e.g. complex geometry, generalized complex geometry, and noncommu-tative geometry, the geometric structure is encoded in a certain differential graded algebra. We develop the module theory of such differential graded algebras in such a way that we can recover the derived category of coherent sheaves on a complex manifold. In this paper and ones to follow we apply this to stating and proving the duality statements mentioned above. After developing the general framework, we look at a (complex) Lie algebroid A → T X. One can then consider our analogue of the derived category of coherent sheaves, integrable with respect to the Lie algebroid. We then establish a (Serre) duality theorem for " elliptic " Lie algebroids and for noncommutative tori.
منابع مشابه
Duality and Equivalence of Module Categories in Noncommutative Geometry Ii: Mukai Duality for Holomorphic Noncommutative Tori
This is the second in a series of papers intended to set up a framework to study categories of modules in the context of non-commutative geometries. In [3] we introduced the basic DG category PA• , the perfect category of A•, which corresponded to the category of coherent sheaves on a complex manifold. In this paper we enlarge this category to include objects which correspond to quasi-coherent ...
متن کاملDuality and Equivalence of Module Categories in Noncommutative Geometry
We develop a general framework to describe dualities from algebraic, differential, and noncommutative geometry, as well as physics. We pursue a relationship between the Baum-Connes conjecture in operator K-theory and derived equivalence statements in algebraic geometry and physics. We associate to certain data, reminiscent of spectral triple data, a differential graded category in such a way th...
متن کاملJa n 20 01 Introduction to M ( atrix ) theory and noncommutative geometry
Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...
متن کامل0 Introduction to M ( atrix ) theory and noncommutative geometry
We give a mostly self-contained review of some aspects of M(atrix) theory and noncommutative geometry. The topics include introduction to BFSS and IKKT matrix models, compactifications on noncommutative tori, a review of basic notions of noncommutative geometry with a detailed discussion of noncommutative tori, Morita equivalence and SO(d, d|Z)-duality, an elementary discussion of instantons an...
متن کاملar X iv : h ep - t h / 00 12 14 5 v 3 2 9 Ju l 2 00 1 Introduction to M ( atrix ) theory and noncommutative geometry
Noncommutative geometry is based on an idea that an associative algebra can be regarded as " an algebra of functions on a noncommutative space ". The major contribution to noncommutative geometry was made by A. Connes, who, in particular, analyzed Yang-Mills theories on noncommutative spaces, using important notions that were introduced in his papers (connection, Chern character, etc). It was f...
متن کامل